

Joni Robbins

Chief Engineer -- BATM TFM-M Program

Joan.M.Robbins@Boeing.com

5/21/2003

Air Traffic Management

Vision: Revolutionary architecture

Trajectory-based airspace management

Satellite-enhanced communication, navigation, and surveillance

Integrated total system solution

Common Information Network

- Today Future
 - Simplified airspace design
- "Layered" security approach
- Open system principles—growth for the future
- Phased transition plan—builds on existing plans

What is modeling and simulation?

Model Human Processor

Card, Moran and Newell 1983

Model Human Processor Model

- The basic perspective is that people are information processing machines with regular (and determinable) processing characteristics
- The MHP is an intentionally simplified model of human performance, intended to provide gross predictions of system behavior
- The detailed properties of the human nervous system and perceptual organs provide important constraints and design possibilities for interaction

Diagram of the EPIC model

Global system-of-systems architecture

BOEING

Architecture models

Coverage	Name	Detail		
1 5 kg	Capacity Demand Model	Determines and represents the resource demands of current and new operational concepts on the system infrastructure and its components		
	Data Link Simulation	Assesses the ability of the air-ground link communication infrastructure to satisfy the performance requirements of security applications and operational concepts		
	Constellation Capacity Simulation	Uses the Capacity Demand Model and its inherent sensitivities to daily variation and geographic demand to determine the viability of existing space-based infrastructures and the appropriate sizing of future space-based architectures		
	Constellation Latency Simulation	Establishes the ability of a space-based ATM infrastructure to meet necessary latency variation requirements		
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Common Information Network Simulation	Measures the performance of network and information architectures in meeting ATC and security information exchange requirements		
	Communication Availability Model	Determines the achievable availability, including factors such as architecture, capacity, demand, security threats, and atmospheric impacts within a specified spectrum		
	Navigation and Surveillance Availability Model	Establishes the availability at various levels of accuracy for navigation and surveillance services, using factors such as spacecraft quantity, geometry, redundancy, user equivalent range error, and security threat		

BOEING

System-of-systems modeling

CIN-CNS frameworks & models

DESIDE concept

(Discrete-Event Simulation Interactive Development Environment)

DESIDE facilitates direct access to simulation modeling by domain experts

Example top level user interface

Regional Traffic Model (RTM)

RTM— sample initial analysis (cont'd)

System Parameters

Qualitative Factors	Actual Simulation Variables	DOE Levels		
		-1	0	1
SurveillanceAccuracy	POSvar velVar	74.08 1.02888		
SurveillanceFrequency	sweep_time velocity lag	2 8	5 20	8 32
ConflictPredictionPeriod	timeIntervalForConflictPrediction	3	30	57
HAMtimes	ControllerReactionTimeMean ControllerReactionTimeStdDev ControllerReactionTimeLowerBound ControllerReactionTimeUpperBound	1 0.5 0.25 2.5	2 1 0.5 5	7.5
	ControllerCognitiveProcessingTime PilotreactionTimeMean PilotReactionTimeStdDev PilotReactionTimeLowerBound PilotReactionTimeUpperBound	1.11 1 0.5 0.5 2.5	2.22 2 1 1 5	3.33 3 1.5 1.5 7.5

Design of Experiment List of Parameter Combinations: DESERTMAN

Metrics

Mean IAT Merge

Min IAT Merge

Max IAT Merge

Std IAT Merge

Median IAT Merge

Mean Inst. Tpt Merge

Min Inst. Tpt Merge

Max Inst. Tpt Merge

Std Inst. Tpt Merge

Median Inst. Tpt Merge

Mean IAT Runway

Min IAT Runway

Max IAT Runway

Std IAT Runway

Median IAT Runway

Mean Inst. Tpt Runway

Min Inst. Tpt Runway

Max Inst. Tpt Runway

Std Inst. Tpt Runway

Median Inst. Tpt Runway

Diversion Rate

COM Useage

NPO Ratio

Good Landing Rate

Num Alt Violations

Num Lat Violations

Num Speed Violations

RTM – sample initial analysis (cont'd) Parameter sensitivities of metrics

TAAM – Total Airspace & Airport Modeller

- Developed by Preston Aviation Solutions, a wholly owned subsidiary of The Boeing Company
- SIM is a discrete event simulator
- Not a playback but a design, analysis, what-if tool
- Has ATC model built in
- Fast-time gate-to-gate simulation
- Parameters and rulebase
- Used in ATM modeling projects since 1995
 - ERAM model under Lockheed Martin
 - Ground operations studies: (767-400 at LGA; Beijing and SEA ground operations study)
 - Airspace studies: (Bay of Bengal procedural airspace analysis, Cleveland free-flight conflict probe)
 - Current ATM trade studies and other analyses

Airspace and airport modeling schedule generation process overview

ASDI/AADS Traffic and Schedule Generation
Or
OAG/other source traffic data

Data Filtering and Verification Tools (UNIX, MATLAB, others)

(Traffic Density Analysis)

TAAM Simulation

AirTraffic Management

1000A-588 21.150 260

National Flow Model (NFM) resource queuing simulation technique

NFM demo: Summer 2020

Benefits analysis

- Evaluate the benefits of changes to technology, operational concepts or implementation strategies
- We determined feasibility (can we) and implementation (how do we do it), now we need to determine should we (why)?

Boeing approach

Baseline
Safety, Delay
Environmental
Efficiency
And Security

Define
Metrics and
Forecast
Demand
Scenarios

Assess OEP against Demand Scenarios

Assess ATM Concept

ATM Objectives

- Affordability
- Capacity
- Safety
- Global Interoperability
- Environmental Efficiency
- Security

Fundamental ATM modernization requires a new modeling and simulation approach

Summary

- A full system modeling and simulation approach is a key enabler for fundamental ATM modernization
- Top-down, requirements-driven (not technology-driven) systems engineering is critical
 - Models and tools are used as enablers to quantify analysis / concepts feasibility
 - Leverage existing tools, models, scenarios
- Future ATM modeling and simulation must be derived from the same systems engineering approach
 - Start with the operational concept, then derive functional allocations and supporting technologies covering "can we?" as well as "should we?"
- Much has been accomplished; much work remains

AirTraffic Management